Neuromechanical models of legged locomotion:
How cockroaches run fast and stably without thinking about it.

5 P P P P P P 5 P P P o P 5 P P P o P P o P P P P

John Schmitt*, Raffaele Ghigliazza**, Justin Seipel***, Raghavendra Kukillaya,

Josh Proctor, Manoj Srinivasan and Philip Holmes, Princeton University;
Tim Kubow, Devin Jindrich, Mariano Garcia, Shai Revzen, Bob Full, UC Berkeley;
Hal Komsuoglu, Pei-Chun Lin, Richard Altendorfer, Dan Koditschek, University of

Pennsylvania;

Martin Buehler, Boston Dynamics.
“Now at ME Dept, Oregon State University, “*now at J.P. Morgan, ***now at Int Biol, UC Berkeley.

Stability and Instability in Mechanical Systems, Barcelona, Dec 2008.

Thanks to NSF, NIH and Burroughs-Wellcome Foundation, and IMA Minnesota, where it all started.
Thanks also to Tere and Angel and the organising committee!



Terrestrial mechanics: La cucaracha

T

(courtesy R.]. Full)

The importance of stability: what can be done without
(much) neural feedback. Dynamical tools in biology.



‘Let’s learn how they run before how they walk!’

Introduction: Fast cockroaches: inertia dominates dynamics, simplifying
potential control strategies. Feedforward ‘preflexes’ dominate.

Part I: Mechanistic theory; passive models.
Simple models: Effective bipeds? Passive springs and hybrid, conservative
dynamical systems. Preflexive stability.

Parts II & III: Towards a synthesis: active models.
Improved models: bursting neurons, a central pattern generator, and muscles
actuation in hexapods (work in progress).

Summary: Mathematical, biological and neuro-mechanical challenges.
Integrative modeling. How much detail is needed? How much is desirable?
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Some questions:

0. Persistent question: How much detail do we need at each stage!
1. Can a passive, energy-conserving model produce stable periodic gaits!

[minimal feedforward TD & LO rules allowed.]

2. Can such a model match the data qualitatively! Quantitatively?
3. Can CPG and muscles be included while preserving preflexive stability?
4. How does reflexive neural feedback interact with mechanical preflexes!

In case you have to leave early ...

SOMeE answers:

1. Yes. 2.Notwith 2 legs; with 6, Yes. 3. Yes. 4. Be patient!
[ 5. 77, but our experience is growing. |




Introduction: how (some) bugs run:

Introduction and background

Net force and moment time histories
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Part I: A passive mechanical model for horizontal plane dynamics:

Simple models - LLS

—9(1)

The bipedal Lateral Leg Spring model

Avio)

The insect: 40+ dof,
net f, M

100s of parameters.

V(1)

A o(1)

The LLS model: 3 dof,

6 parameters:
w1, B L, &0,

A
(4 nondimensional: f

I L k2 F_d
= k= ,,E'd_TM)'

mi?’ muv4?

4 states: (’U, 9,0, 0 = w)

+ translation invariance

Less is more! Simplify!
Schmitt & H, Biol. Cyb. 83, 86, 89, 2000-2003.
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Newton rules, in piecewise-smooth, hybrid form:

11

Simple models - LLS
LLS: equations

of motion

(@)
Cooupled translation-rotation dynamics: m¥ = R(0) £, 16 = (rp(t,) —r) x R(0)f.

(b)

f = foot/leg force; R() = rotation matrix; rp(t,) = foot position in stance.

During stance, use polar coords about foot:

L = 7?({’ + (3% + =60% — V(n) : Lagrangian;

n even L
n = /0L L Casnip —(—1ra)) : leg lenst
n V2 A+ @+ 2¢dsin(y — (—1)70)) : leg lenoth{  odd R

d = dy, fixed COP; d = (v — (—1)"0))d; , moving COP .

Lp =mC%) 4+ 10 = AM about stance foot conserved = reduces to two dof.
.. it’s still non-integrable, but d = O yields an integrable hybrid system.
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Preflexes ~ partial asymptotic stability for a conservative system:

Simple models - LLS

Branches of stable periodic gaits exist for fixed (d < 0) and moving COP (d \).

Fixed COP Moving COP
1 . . . 1 : : :
¥
= R
] 80_5 . gl) | ...............................
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o 8 :
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\_stable (3, m)
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Eigenvalues of Fj o Fy: Ay = Ay =1 (v,0) and |A3], |\4| < 1 (§,w): partial
asymptotic stability.

Poincaré map

Schmitt & H, Biol. Cyb. 83, 86, 89, 2000-2003.
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Piecewise holonomic constraints & partial asymptotic stability:

Classical holonomically-constrained mechanical systems have
symplectic phase spaces, so cannot exhibit asymptotic stability.
Linearized systems have eigenvalues occurring in pairs:

x =JDH(x) = =+, or A, 1/ for Poincaré map.

So if one direction is stable, another is unstable. But nonholonomic
systems can exhibit exponential stability: e.g., the Chaplygin sled or ice-
skater (see Neimark-Fufaev). A. Ruina invented a piecewise holonomic
sled. Successive peg insertions transform angular momentum to linear
momentum, so straight running is partially asymptotically stable.

Example: Peg-leg walker:
b1\ |1 B f, A mala+d)+ 1
po,..) |0 A pe, ] |mla+d)?+1

Angular momentum balance about peg insertion point. '
o o
e

A

(b)

LLS has no impacts: conserves energy, but trades ang. mom. step to step.




Partial asymptotic stability via geometry & piecewise holonomy:

Simple models -- LLS
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But the passive LLS model is too (two) simple: o1

Simple models - LLS

COM moments much too small: two legs are not enough!
1T S Madel-

Stability emerges from hybrid structure. The system
is conservative (Hamiltonian) during each stride, but
AM is traded from foot to foot at TD, leading to net
loss of AM and rotational KE => translational KE,
so the path straightens.

Q1. Can a passive, energy-conserving model produce stable

periodic gaits’  Yes.

/}\ }/\i E . i \, v é??f \\\

Q2. Can such a model match the data quantitatively? |°

In stand et

fmogn, Not with 2 legs.
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Part II: A neural pattern generator for insect locomotion:

A(t,q,X) FL(X) FV(V)

Hexapedal models - CPG and muscles
CPG -+ motoneurons + muscles
a) CNS b)
(@) ;O
x—/@_ Leva
\ % \\\\
. N Sensors...
N - L2 @
\_ ~dbs) Depressor
Pearson, 1972.
Muscle
—| Motoneuron & Excitation 1UIR Crossbridge ar(t) X} Hill
+ Hill type muscle model
(coming later)
Ghigliazza & H, SIAM ] Appl. Dyn. Sys. 3, 636-670 & 671-700, 2004.
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Hezxapedal models - CPG and muscles
A hexapedal model with a central pattern generator

Main ingredient: bursting interneurons, modeled by ion channel (Hodgkin-Huxley
type) dynamics, reduced to 3 equations by equilibrating (very) fast gating variables

Oy = —[[Ca‘F]K‘F[KCa._'_gL(fU_EK)]+[5~Vn+[e}{t’
1 = s ma(v) = ml sy
Ty e ‘<o
. 0 .
¢ = %[cm(v)—c],

Ica = Gcaoo(V)(v — Eca) , Ik =ggkm - (v — Ex), Ikca = JkcaC- (V — Exca) -

10
0
_ oy 10
Synaptically coupled d 20
, E
via 1, syn- > 30
. Soo(l—s)—s
& — Soo(179) ’
Tsyn
1 . 60 ; *
SOO — 0 10 2000 3000 4000 5000
1_~_e*ksyn(v—vsyn) ) c Time [ms]

Isn = GsynS(V — vsym) - Key output params: Spiking freq. Duty cycle Stepping freq. Need
to understand how input currents and conductances tune them.
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Simplify again: reduce each oscillator state to a single phase angle:

Hexapedal Models - CPG

Good coordinates! Phase response curves (PRC) for periodically bursting cells:

0.35

q 03
A¢ def
PRC = —2 ¥ 7(4):
o 2(9)

® = w + Z(¢)|inputs|.

PRC tells how phases shift
as a function of input phase, /7 e
explain coordination.

-0.5




Simplify further: average over the step period: 28

Hezapedal models - CPG and muscles

Towards the CPG circuit: Analyze coupling effects via Phase Response
Curve Z(¢) [Malkin, Winfree, Ermentrout|. For a pair of oscillators:

3)
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28

Hezxapedal models - CPG, motoneurons, and muscles

CPG and motoneuron outputs: correct phasing for double tripod gait

CPG4

11

CPG
A
S
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Part IIl: Towards an integrated neuromechanical model:

Hexapedal models - jointed legs

Now we want to integrate the CPG and motoneurons with simplified
muscles and jointed limbs, thus moving towards neuromechanics. Start with
actuated springs at the two major leg joints for horizontal plane motions:

3

Musculo-
apodeme

force,
MAC
Fr

yb‘

0

Femur
Coxa

Musculo-
apodeme
___________ complexes,

Tibia

Middle MACs
: Leg force Musculo
moment arm,  apodeme
_— R moment
Hind Tibia arm,
i
Tarsus
s Leg
force,
Pretarsus Fles F%AAC F=FLeg R

R.J. FULL anD A. N. AHN
The Journal of Experimental Biology 198, 1285-1298 (1995)

Seipel, H, Full, Biol. Cybern. 91, 76-90, 2004.
Ghigliazza & H, Reg. Cha. Dyn. 193-225, 2005.
Kukillaya & H, Biol. Cybern. 97, 379-395, 2007.




Hexapedal models - jointed legs

First we build an mechanical model with realistic leg geometry and actuated
torsional springs at the joints. Given insect foot forces and COM motions,
we solve an inverse problem to derive feedforward inputs to joint angles that
yield joint torques and foot forces that match the data.
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Hexapedal models - jointed legs

With appropriate leg cycle frequency and stride length variations, we
find branches of stable gaits over the physiological speed range. Again
we use stride-to-stride Poincaré map analysis:
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Black: expt. Eigenvalue dependence on speed.
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L. H. TING!, R. BLICKHAN? anD R. J. FULLL
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Experimental evidence for preflexive (mechanical) stabilization:

A Rapid Impulse Perturbation, and its consequences.
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Recovery within 1 stride: 15-35 msec. Too fast for neuromuscular

corrections via proprioceptive sensory system!
Jindrich & Full, ] Exp. Biol. 205, 2803-2823, 2002.




Hexapedal models - jointed legs

We perform the RIP on the model, without corrective steering.
* The purely feedforward actuated system is also preflexively stable. *

----------------------------------------------------------
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We have an good mechanical model, but can we incorporate the CPG and muscles?




Integrated CPG-muscle-hexapedal models
. Muscl
A model for muscles (after A.V. Hill): e
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Calcium release dynamics:
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Match isolated EMG, isometric & const. veloc muscle data from Ahn, Meijer & Full, 1998-2006.




Integrated CPG-muscle-hexapedal models
Inserting extensor-flexor muscle pairs at each joint, we produce
an integrated model:
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Leg
force,
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R. Kukillaya, work in progress, 2008.




Integrated CPG-muscle-hexapedal models

Let the beast run! We obtain a good quantitative match to data,
and stability over the physiological speed range.
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R. Kukillaya, work in progress, 2008.




Integrated CPG-muscle-hexapedal models
Stability: the model is robust to realistically variable touchdown foot
placements (still without reflexive feedback control):

2.5 ‘\ . ,‘l
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PCA analysis of video from
running roaches, fit
Gaussian distributions of
TD positions in body frame.

Data supplied by Shai Revzen, Polypedal Lab, UC Berkeley.

Fast eigenvalues filter out high frequencies, leave slow heading changes.
Also robust to variable neural spikes and foot touchdown & liftoff timing.




Hexapedal models - jointed legs

Steering by adjusting foot positions at TD for 2-4 strides to use
unstable dynamics (still feedforward control):

Simple LLS model: to turn right,
move COP forward on left TD
for 24 steps

Hexapod with random perturbations

yim)

x(m)

Proctor & H, Reg & Cha. Dyn., 13 (4), 267-282, 2008.




The end of la cucaracha
(the perils of instability)




Summary

1. Passive springy legs + biped geom + intermittent stance phases can stabilize:
preflexes beat reflexes on short timescales! But bad forces & moments.

2. Bursting neuron CPG model, phase reduction, control parameters.

3. Actuated hexapedal models get forces right, incorporate muscles, preserve
preflexive stability, will allow integration of CPG and sensory feedback.

4. Persistent question: How much detail do we need?

5. Math tools: deterministic & stochastic dynamical systems, control theory,

Open Problems: Add sensory feedback; develop theory and numerical methods

for hybrid dynamical systems, .....
[Review article: H,Full,Koditshek & Guckenheimer, SIAM Review 48(2), 207-304, 2006.]

A moral: Integrative biology needs mathematics and mechanics:
molecules & cells don’t explain everything!




Integrated CPG-muscle-hexapedal models
So, what do we have to show after 10 years?

extexgeéptive
ed

motoneurons

4. How dpes reflexive neliral feedback

interact with mechanical [preflexes?

B¢ patient: it’s roming!
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